🔥 Đề thi HOT:

2867 người thi tuần này

5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)

62.5 K lượt thi 126 câu hỏi
1379 người thi tuần này

80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)

14 K lượt thi 20 câu hỏi
1374 người thi tuần này

80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)

13.1 K lượt thi 20 câu hỏi
1042 người thi tuần này

15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)

9.8 K lượt thi 15 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Lời giải

Media VietJack

1) Ta có \(\widehat {OAM} = 90^\circ \) (do MA là tiếp tuyến của (O), A là tiếp điểm).

Suy ra ba điểm O, A, M cùng thuộc một đường tròn đường kính OM   (1)

Lại có \(\widehat {OBM} = 90^\circ \) (do MB là tiếp tuyến của (O), B là tiếp điểm).

Suy ra ba điểm O, B, M cùng thuộc một đường tròn đường kính OM   (2)

Từ (1), (2), ta được tứ giác AMBO nội tiếp đường tròn đường kính OM.

2) Đường tròn (O) có NP là dây cung.

Mà K là trung điểm của NP (giả thiết).

Suy ra OK NP tại K hay \(\widehat {OKM} = 90^\circ \).

Do đó ba điểm O, K, M cùng thuộc một đường tròn đường kính OM.

Mà từ kết quả câu 1), ta có bốn điểm A, M, B, O cùng thuộc một đường tròn đường kính OM.

Vậy năm điểm O, K, A, M, B cùng nằm trên một đường tròn đường kính OM.

3) Từ kết quả câu 1), ta có tứ giác AMBO nội tiếp đường tròn đường kính OM.

Suy ra AB là dây cung của đường tròn đường kính OM.

Do đó OM AB.

∆OAM vuông tại A có AI là đường cao.

Áp dụng hệ thức lượng trong tam giác vuông, ta có: OA2 = OI.OM và OI.IM = IA2.

OI.OM = R2 và OI.IM = IA2.

Vậy ta có điều phải chứng minh.

4) Ta có OA AM (do AM là tiếp tuyến của (O) và BD MA (giả thiết).

Suy ra OA // BD.

Chứng minh tương tự, ta được OB // AC.

Do đó tứ giác OAHB là hình bình hành.

Mà OA = OB = R.

Vậy tứ giác OAHB là hình thoi.

5) Ta có OH AB (do tứ giác OAHB là hình thoi).

Mà OM AB (theo kết quả câu 3).

Do đó OM ≡ OH.

Vậy ba điểm O, H, M thẳng hàng.

6) Do d là tiếp tuyến của đường tròn (O) nên mọi điểm đều nằm cùng một phía đối với d.

Ta có OAHB là hình thoi (kết quả câu 4).

Suy ra AH = OA = R.

Do đó khi M di động trên d thì H cũng di động nhưng luôn cách A một khoảng cố định bằng R.

Vậy quỹ tích của điểm H khi M di chuyển trên đường thẳng d là nửa đường tròn tâm A, bán kính AH = R.

Lời giải

Lời giải

Ta có \[\cos x - \sqrt 3 \sin x = 2\cos 2x\]

\( \Leftrightarrow \frac{1}{2}\cos x - \frac{{\sqrt 3 }}{2}\sin x = \cos 2x\)

\( \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \cos 2x\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{3} + k2\pi \\2x = - x - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\3x = - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm là \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Lời giải

Ta có \[\sqrt 3 \sin x + \cos x = 2\cos 2x\]

\( \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x = \cos 2x\)

\( \Leftrightarrow \cos \left( {x - \frac{\pi }{3}} \right) = \cos 2x\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = x - \frac{\pi }{3} + k2\pi \\2x = - x + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\3x = \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm là \(\left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Lời giải

Số phần số quả táo mẹ cho chị là: \(\frac{1}{4} = \frac{5}{{20}}\) (số quả táo).

Số phần số quả táo mẹ cho em là: \(\frac{2}{5} = \frac{8}{{20}}\) (số quả táo).

Vì 8 > 5 nên \(\frac{8}{{20}} > \frac{5}{{20}}\).

Suy ra \(\frac{2}{5} > \frac{1}{4}\).

Vậy mẹ cho em nhiều táo hơn.

Lời giải

Lời giải

Ta có \(C = \frac{{x + 4}}{{\sqrt x }} = \sqrt x + \frac{4}{{\sqrt x }}\).

Áp dụng bất đẳng thức Cauchy cho hai số \(\sqrt x ;\frac{4}{{\sqrt x }}\) ta được:

\(\sqrt x + \frac{4}{{\sqrt x }} \ge 2.\sqrt {\sqrt x .\frac{4}{{\sqrt x }}} = 2\sqrt 4 = 4\).

Dấu “=” xảy ra \( \Leftrightarrow \sqrt x = \frac{4}{{\sqrt x }} \Leftrightarrow x = 4\).

So với điều kiện x > 0, ta nhận x = 4.

Vậy giá trị nhỏ nhất của C bằng 4 khi và chỉ khi x = 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 19

Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Tính thể tích V của khối lăng trụ ABC.A’B’C’.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 20

Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’. Khoảng cách từ M đến mặt phẳng (A’BC) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 27

Giá trị nhỏ nhất của hàm số y = sin2x + sinx – 3 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 44

Cho tam giác ABC đều cạnh a. Khi đó \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 46

Cho A = (–∞; –2], B = [3; +∞) và C = (0; 4). Khi đó, (A B) ∩ C là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

12016 Đánh giá

50%

40%

0%

0%

0%